Low Intensity Pulsed Ultrasound

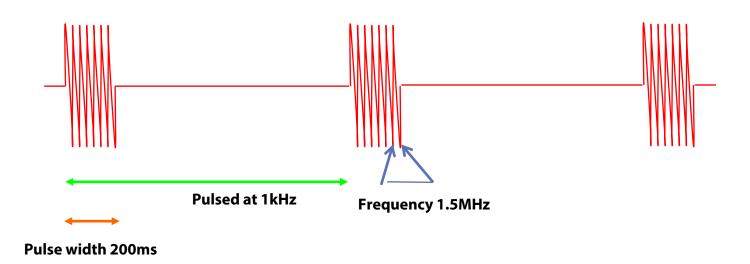
The successful aid for healing bones.

2

CONTENT

- Part I: What is Ultrasound?
 - Studies
- Part II: Comparison Melmak / Exogen
- Part III: Indications
 - Target groups / audiences

PART I

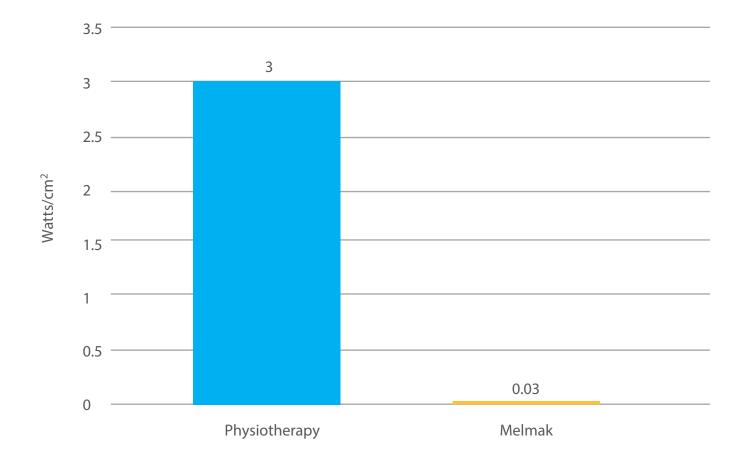

• What is Ultrasound?

Studies

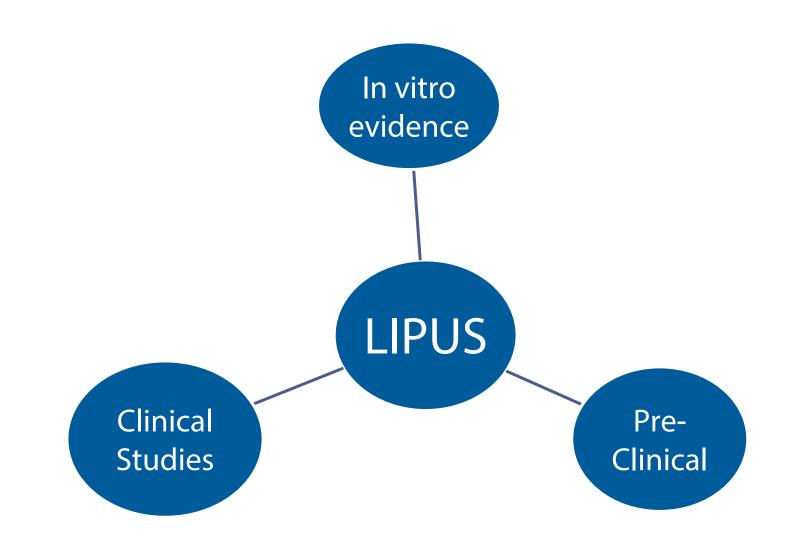
Ultrasound

- Inaudible high frequency mechanical vibrations
 - o Above 20kHz
 - Introduced as a therapy over 70 years!
- Mechanical energy transmitted as an acoustical pressure wave
 - Propagated through molecular collision and vibration with a progressive loss in intensity (attenuation) due to absorption and scatter of the wave

Low Intensity Pulsed Ultrasound



Standard signal and regulatory approved throughout the world to assist with fracture healing


Many studies supporting the biological effects(s) of LIPUS

Part I

LIPUS ≠ Physiotherapy Ultrasound

Part I

8

Studies

- Julius Wolff
 - German anatomist, born March 21, 1835, Märkisch-Friedland in Westpreussen; died February 2, 1902.

Wolff's law stated that every **change in form and function** of a bone, or in its function alone, is followed by certain definite **changes in its internal architecture** and equally definite secondary alteration in its mathematical laws

Available online at www.sciencedirect.com

Life Sciences

Life Sciences 79 (2006) 1936-1943

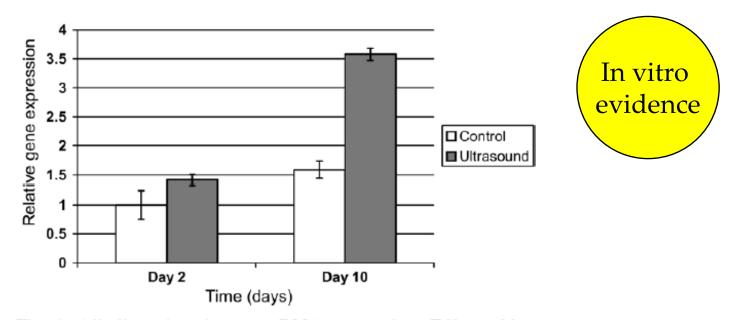
www.elsevier.com/locate/lifescie

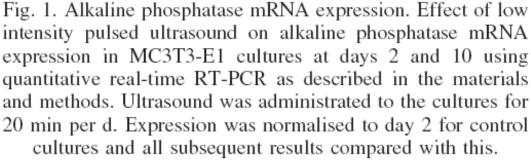
Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells

Kyoko Ikeda ^{a,b}, Tadahiro Takayama ^{a,*}, Naoto Suzuki ^{c,d}, Koichi Shimada ^{a,e}, Kichibee Otsuka ^{c,d}, Koichi Ito ^{a,e}

^a Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
 ^b Nihon University Graduate School of Dentistry, Tokyo, Japan
 ^c Danartment of Riachemister, Nihon University School of Dentistry, Takyo, Japan

Ultrasound in Med. & Biol., Vol. 33, No. 9, pp. 1468–1474, 2007 Copyright © 2007 World Federation for Ultrasound in Medicine & Biology Printed in the USA. All rights reserved 0301-5629/07/\$-see front matter


doi:10.1016/j.ultrasmedbio.2006.12.003


• Original Contribution

PULSED LOW INTENSITY ULTRASOUND ENHANCES MINERALISATION IN PREOSTEOBLAST CELLS

JENNY UNSWORTH, SAIRA KANEEZ, SUE HARRIS, JONATHAN RIDGWAY, STEVEN FENWICK, DAVID CHENERY, and ANDREW HARRISON Smith and Nephew Research Centre, York Science Park, Heslington, York, United Kingdom

(Received 9 May 2006; revised 14 December 2006; in final form 19 December 2006)

Available online at www.sciencedirect.com

SCIENCE ODIRECT.

Biomaterials 24 (2003) 2379-2385

Biomaterials

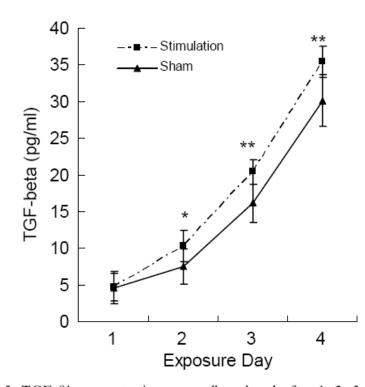
www.elsevier.com/locate/biomaterials

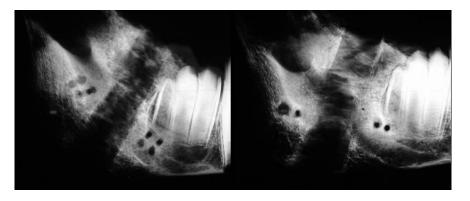
Cytokine release from osteoblasts in response to ultrasound stimulation

J.K. Li^a, W.H. Chang^{a,*}, J.C. Lin^a, R.C. Ruaan^b, H.C. Liu^c, J.S. Sun^c

 ^a Department of Biomedical Engineering, Bone Tissue Engineering Research Center, Room 818, Building of Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
 ^b Department of Chemical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
 ^c Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan

Received 29 October 2002; accepted 19 January 2003




Fig. 5. TGF- β 1 concentration per well-analyzed after 1, 2, 3 and 4 days of exposure of osteoblasts to ultrasound or sham exposure for 15 min per day. The symbol * indicates p < 0.05 (n = 10) when compared with the sham group, and ** means p < 0.01 (n = 10) when compared with the sham group.

Pre Clinical Studies

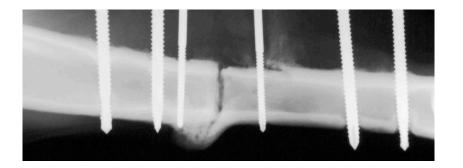
AUTHOR	STUDY	OUTCOME MEASURE	RESULTS
Walsh et al 2007	Effect of US on tendon-bone healing - sheep model	Healing of tendon/ bone junction	improved healing
Cook et al 2001 Clinical orthopaedics and related research	Improved cartilage repair after US - rabbit model	Cartilage Healing	daily US had positive effect on osteochondral damage
Leung et al 2008, Journal of Orthopaedic Research	Low-Magnitude High-Frequency Vibration Accelerates Callus Formation, Mineralization, and Fracture Healing in Rats	acceleration of healing	low-magnitude high-frequency vibration (enhances healing in the closed femoral shaft fracture in rats.
Pilla et al 1990, Journal of Orthopaedic Trauma	Non Invasive Low Intensity pulsed Ultrasound Accelerates Bone Healing in the Rabbit	acceleration of healing	Ultrasound treated bone as strong in torsion as intact fibulae, increased periosteal reaction
Walsh et al 2007, J Biomed Mater Res B Appl Biomater 2007	Effect of low intensity pulsed ultrasound of healing of an ulna defect filled with a bone graft substitute	rate of defect healing	LIPUS resulted in more new bone growth at wk 4 and 12 compared to control and increased VEGF expressionLIPUSPUSth
Walsh et al 2007, Athroscopy	Effects of Low Intensity Pulsed Ultrasound on Tendon Bone Healing in an Intra articular sheep knee model	Healing at tendon/bone junction	LIPUS resulted in improved ability to withstand increased load at tendon/bone junction
Lu et al, 2008 Ultrasound in Medicine	Low Intensity Pulsed Ultrasound Accelerated Bone tendon junction healing through regulation of vascular endothelial growth factor expression and cartilage formation	Healing of tendon/ bone junction	LIPUS resulted in enhanced healing at bone/tendon junction
Cook et al, 2001 Clinical Orth and Related Research	Improved Cartilage Repair After Treatment with Low Intensity Pulsed Ultrasound	Healing of Osteochondral Defect	Ultrasound treatment significantly improved the morphologic features and histologic characteristics of the repair cartilage

Pre Clinical Studies

• Evaluation of external ultrasound stimulation and growth factors on bone healing during distracting of the mandible, Stephens, et al, 2005

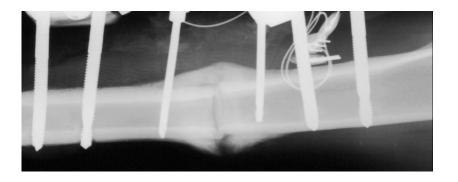
Day 25: 1 mm per day

Day 25: 1 mm per day + LIPUS



Day 25: 3 mm per day

Day 25: 3 mm per day + LIPUS


Pre Clinical Studies

HANTES, MD et al, 2004

Fig. 4-B

In contrast, in the treatment group the callus is more dense and homogeneous with a large **diameter.**

16

Human – Clinical

Burden of Proof

Tokai J Exp Clin Med., Vol. 32, No. 4, pp. 121-125, 2007

Effect of Low-Intensity Pulsed Ultrasound Treatment for Delayed and Non-union Stress Fractures of the Anterior Mid-Tibia in Five Athletes

Yoshiyasu UCHIYAMA^{1,3}, Yutaka NAKAMURA², Joji MOCHIDA¹ and Tetsuro TAMAKI³

 ¹ Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
 ² Research Institute of Sports Medical Science, The Tokai University
 ³ Division of Basic Clinical Science, Laboratory for Muscle Physiology and Cell Biology, Tokai University School of Medicine

(Received July 16, 2007; Accepted September 7, 2007)

J Orthop Sci (2007) 12:35–41 DOI 10.1007/s00776-006-1080-3 JOURNAL OF ORTHOPAEDIC SCIENCE

© The Japanese Orthopaedic Association

Original article

Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures

SEIYA JINGUSHI¹, KOSAKU MIZUNO², TAKASHI MATSUSHITA³, and MORITOSHI ITOMAN⁴

¹Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan ²Kobe Rosai Hospital, Kobe, Japan

³Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan

⁴Department of Orthopaedic Surgery, School of Medicine, Kitasato University, Sagamihara, Japan

Eur J Orthop Surg Traumatol (2005) 1. DOI 10.1007/s00590-005-0235-9	5: 244–246		
CASE REPORT Takaaki Fujishiro · Nobuzo Mats Hiroyuki Fujioka · Masaya Tsuno Masahiro Kurosaka			
Treatment of a bone using low-intensity p	defect in the femoral shaft Ilsed ultrasound	after osteomyelitis	
ELSEVIER		ound in Med. & Biol., Vol. 31, No. 10, pp. 1391–1402, 20 005 World Federation for Ultrasound in Medicine & Biolo Printed in the USA. All rights reserv 0301-5629/05/8-see front math 02	ey od
• Original Contribu	tion		-
LOW-INTENSI	TY PULSED ULTRASOUND: EFI	FECTS ON NONUNIONS	
	AUER,* EDGAR MAYR, [†] ERNST ORTHNER k Tegernsee, Tegernsee, Germany; *Zentralkliniku	DOI 10 1007/e00264_004_0625_3	121–124
	is der Barmherzigen Schwestern vom Heiligen Gei ⁸ Exogen Inc., Piscataway, NJ, USA	ORIGINAL PAPER	
Knee Surg Sports Traumatol Arthrosc (2004) 12 : 162–164	SPORTS MEDICINE	Hani El-Mowafi · Mona Mohsen	
DOI 10.1007/s00167-003-0425-0		The effect of low-intensit in tibial distraction oste	ty pulsed ultrasound on callus maturation ogenesis
Hiroyuki Fujioka Luishi Tanaka	Ultrasound treatment		
Juichi Tanaka Shinichi Yoshiya Masaya Tsunoda	of the hook of the ha	mate	
Masaya Tsunoda Kenji Fujita Nobuzo Matsui Takeshi Makino Masahiro Kurosaka	in sports activities		

Busse et al., Meta analysis

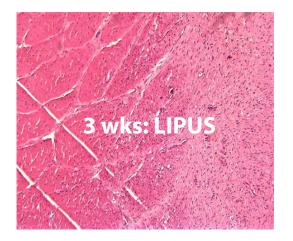
Table 1: Sun	nmary of the t	trials inclue	led in the	e meta-analysis							
		Sample no. of fr	,		Male:	Fract	ure	Mean time (and S			
Trial	Location of fracture	Treatment group	Control group	Mean age (and SD), yr	female ratio	Open	Closed	Treatment group	Controi group	Effect size	Quality score†
Heckman et al³	Tibial shaft	33	34	Treatment 36 (2) Control 31 (2)	54:13	3 (grade I)	64	114 (7.5)	182 (15.8)	5.41	5
Kristiansen et al ^{≠0}	Distal radius	30	31	Treatment 54 (3) Control 58 (2)	10:51	0	61	61 (3)	98 (5)	8.82	5
Mayr et al⁴²	Scaphoid	15	15	37 (14)	25:5	NA	NA	43 (11)	62 (19)*	1.20	4
Note: SD = standa	rd deviation, NA = n	ot applicable.									

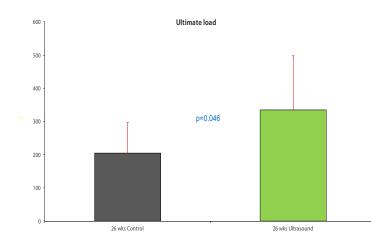
*Healing time was defined as the time from initiation of treatment to removal of the cast. †Maximum score 5 (see Methods section).

New Indications

 \bullet \bullet \bullet

Tendon Bone Healing


• Effects of low intensity ultrasound on tendon bone healing Walsh, WR et al 2007



Tendon Bone Healing (cont.)

- Improved healing at tendon bone interface for soft tissue grafts
- Increased integration between tendon and bone
- Improved mechanical properties of graft
- Conclusion: Indications of low intensity pulsed ultrasound maybe expanded to include tendon-bone healing
 - o RC repair
 - o ACL repair

Rotator Cuff

Effect of LIPUS on T-B Healing

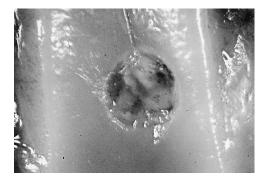
The Effects of Low-Intensity Pulsed Ultrasound on Tendon-Bone Healing in a

Transosseous-Equivalent Sheep Rotator Cuff Model

Running title: Effect of LIPUS on T-B Healing

Vedran Lovric BE MBiomedE, Michael Ledger MD, Jerome Goldberg MD, Wade Harper MD,

Yan Yu PhD, Nicky Bertollo PhD, Matthew Pelletier PhD, Rema Oliver PhD, and William R.


Walsh PhD

Cartilage / Chondral

The Effect of Low-Intensity Pulsed Ultrasound on Autologous Osteochondral Plugs in a Canine Model, Cook et al 2008

• Low-intensity pulsed ultrasound improved interface cartilage repair of autologous osteochondral plugs compared with controls in a canine model.

4 weeks of daily ultrasound

PART II

Comparison Melmak vs. Exogen

Pro & Contra Exogen Money Back Guarantee

- It is legally not always allowed (e.g. in Germany it is forbidden to give a healing guarantee and this could be one!)
- Patient has to prove that the device is used according the instructions etc.

It is **your decision** as a distributor which strategy you want to use in your market!

You can do it in a similar way but as **WE ALWAYS WANT to act better** - BTT is following a different strategy.

Precision is always better.

bone/ce

Melmak

- ✓ SATA 30 mW/cm² +/-10%
- ✓ Acoustic power 118 mW +/-10%
- ✓ 2 Transducer sizes for convenient adjustment
- ✓ Each device individually calibrated
- ✓ Higher amounts of treatment
- Multiple and single patient devices
- Circuit board Made in Germany

Others

- SATA 30 mW/cm² +/- 30%
- Acoustic power 117 mW +/- 30%
 - 1 Transducer size only

Due to high tolerance mass production without individual calibration

- Less amount of treatments
- Single patient devices only

MEMOK – High accuracy for best results.

The quality difference is in the signal

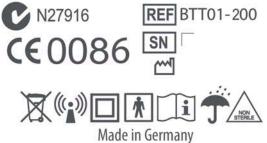
BTT Health GmbH Billerberg 7; 82266 Inning am Ammersee/Germany Tel. +49(0)8143 99241-20; Fax +49(0)8143 99241-29 info@btt-health.com; www.btt-health.com

DC Battery: 3.7Vdc, 1.8Ah A_{er}: 3.88 cm²±10%

DC Charger: 5Vdc, 1.2A

DF: 20%

Puls:


l_e: 30mW/cm²±10%

prp:1s ±10%

Waveform: pulsed IP22 $t_P: 200 \mu sec \pm 10\%$

P: 118mW ±10% R_{BN}: < 6

ONLY USE CHARGER PACK SUPPLIED WITH UNIT

Exogen

Technical specification (out of their IFU)

- EXOGEN Operating Specifications
- Modulating signal burst width 200+/- 10% microsecond (μs)
- Repetition Rate 1.0+/- 10% kilohertz(kHz)
- Duty Factor 20%
- Effective radiating area (ERA) 3.88 +/- 1% square cm (cm²)
- Spatial avg.-temporal avg. (SATA) 30 +/- 30% mW/cm²
- Temporal average power 117 +/- 30% milliwatts(mW)
- Beam non-uniformity ratio (BNR) 4.0 maximum
- Battery 3.7 VDC, 700 mAh
- Battery Type Lithium-ion
- Input Voltage (USB) 5.0 VDC, 2.6A max.
- Beam type Collimated

Strategy of BTT Health

- Biggest interest of a patient is to be healed!
- It is not their interest to get their money back!
- Depending on your price / treatment you can calculate when your device is fully paid
- A patient will get a device for free until the healing occurs (customers will ask for that perhaps once/year every 80,000 treatments)

Part II – Comparison

identical indications identical usage identical ultrasound signal but...

Melmak	Exogen
 TWO transducer sizes (small & large) ONE single device for all fractures Devices with 200, 350 and 1500 treatments 	 ONLY one small transducer with For each fracture one device (e.g. with most broken shoulders) ONLY one type of treatment

Transducer – small AND large

- To allow improved handling depending on where the fracture is and how old the patient is.
- Technical structure "inside": the signal and the intensity are the same, only the housing of the transducer and the transducer holder are of different sizes.

Why small?

- Especially for fractures at the smaller extremities like foot/ankle, hand, shoulder.
- It stays better in position and is reducing the load on the fracture.
- More convenient for the patient.

Part II – Comparison

Why large?

- Easier to adjust and to correct the position at all other areas
- Easier handling particular for especially elderly patients

Part II – Comparison

Different numbers of allocated treatments

Melmak	Exogen	
A version e.g. with 1,500 or 350 programmed treatments allows renting the device to: • different patients or	Only single patient devices! Exogen is not offering a version with a higher amount of treatments .	
 usage in a hospital with a number of different users/per day or one patient with several/ multiple fractures (e.g. shoulder) 	Means: Four fractures - four different devices	

• Additionally 200 treatment device for single patient use!

Part III

- Indications
- Target groups / Audiences

Part III

Ease of Use

- Non invasive
- Application over fracture site
- 20 minute treatment daily

Low Intensity Pulsed Ultrasound – LIPUS

Increases

- Gene expression
- Secretion of growth factors
- Ossification
- Blood flow
- Number of stem cells at fracture increases proliferation of stem cells into bone

Indications

where bone is needed to form/heal/remodel

Bone and Soft Tissue Indications

- Fresh fractures
- Delayed unions
- Non Unions
- To promote healing at boney / tendon junction

Special Indications

- Delayed unions
- Pseudarthrosis AND even with very long lasting Pseudarthrosis

We have seen very good results and studies have supported this as well. The treatment time will be longer but the result is achieved in moist of the cases.

• Because of the healing rate of above 90 % (a stay in hospital is far more expensive than a treatment with LIPUS)

Target Audiences

Quicker fracture healing is very important for

- Entrepreneurs
- People who have a job with high responsibility and need to be able to work quickly again
- Sport professionals in many cases paid by the employer
- Police employees
- Army employees

Benefits for Patients

- Quicker bone healing (between 30 to 50 % faster recovery time)
- Extremely successful track record for solving delayed unions and healing Pseudarthrosis (10 % of all fractures)
- Earlier back to the job
- Ease of use
- No side effects

Benefits for Distributors, Patients, Health Insurance

Several options for a distributor –

- a straight forward sale without any additional effort for refurbishment if sold as single patient device
- Patients get a brand new and not a refurbished device, single patient device e.g. 200 or 350 treatments
- AND offering the solution for those who need more treatments per device like hospitals or rehab institutions.

Conclusion I

- 20 minute treatment daily
- Small and large transducer
- Will assist every stage of healing (even long lasting Pseudarthrosis)
- Hospital or/and Patient
- Purchase or rental options
- Different treatments one device
- Specific clinician software for treatments

Conclusion II

- Melmak effective for accelerating fracture healing by 38% (results from studies performed with Melmak signal)
- Melmak average healing rate of 86% for non unions (results from studies performed with Melmak signal)
- Consider as a first option for the management of fractures, delayed unions and non unions
- Achieves similar healing rates to surgery, BMPs, implanted bone stimulators without associated risks, complications and cost

Thank you for your attention.

BTT Health GmbH

Billerberg 7 | 82266 Inning am Ammersee | Germany Tel. +49 8143 99241-20 | info@btt-health.com | www.btt-health.com

> © 2017 BTT Health GmbH BTT01-350, V1 – 2017-12-22